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Abstract

Previous multi-modal embodied navigation research focused1

on completing tasks by aligning image features with natural2

language instructions. In this paper, we investigate if intrinsic3

features such as common sense and semantic understanding,4

which are critical for human navigators but ignored in pre-5

vious research, also help artificial agents navigate in realis-6

tic 3D environments given a high-level linguistic instruction.7

From our experiments, we observe that common sense helps8

the agent in long-term planning, while semantic understand-9

ing helps the agent in local planning in the room navigation10

(RoomNav) task. We also propose a novel semantically-11

guided self-supervision mechanism which further improves12

the performance of the agent on unseen environments. The13

cross-modal embeddings learned during training suggest that14

common sense and semantic understanding helps in captur-15

ing the structural and positional patterns of the environment,16

implying that the agent benefits by inherently learning a map17

of the environment.18

Introduction19

Most previous embodied agent research focuses on com-20

bining language and visual inputs (Das et al. 2017, 2018;21

Gordon et al. 2017; Manolis Savva et al. 2019; Mirowski22

et al. 2018; Anderson et al. 2017; Fried et al. 2018; Wang23

et al. 2018). However, recent research suggests that using24

language instructions alone can outperform models with vi-25

sual features (Anand et al. 2018; Hu et al. 2019). It raises26

the question of what the agent actually learns from both the27

visual and language inputs, and if there is any underlying28

features that the agent can benefit from.29

Most past research ignores intrinsic features such as com-30

mon sense of the environment settings and encoded scene-31

relevant information such as semantic understanding. Thus,32

previous agents need to rely on step-by-step instructions33

(Shridhar et al. 2020) to navigate to the target successfully,34

especially in a new environment. In comparison, humans do35

not require low-level instructions such as “go straight for five36

meters, and turn left at the end of the hallway” to navigate to37

the restroom in a new restaurant. Instead, humans leverage38

intrinsically embedded features such as scene information39

and common sense of room layouts to navigate in an unseen40
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environment. Automated agents, however, have difficulties 41

in performing grounded language navigation tasks with ab- 42

stract, high-level instructions such as “go to the kitchen” in 43

realistic unseen 3D environments (Tangiuchi et al. 2019). 44

We hypothesize that common sense of room layout and se- 45

mantic understanding of the environment can benefit agents 46

in a similar way as they benefit humans. Specifically, com- 47

mon sense of room layout can assist path planning by setting 48

the general course of the trajectory. For instance, when nav- 49

igating to the kitchen, it is useful to know that a dining room 50

is usually close to a kitchen. On the other hand, semantic un- 51

derstanding of the room (i.e. objects in each room, etc.) sup- 52

ports better local actions. For example, agents should stop 53

when the target room is reached. 54

In this work, we explore the role of common sense room 55

layout and room semantic understanding in the concept- 56

driven room navigation task. Figure 1 describes an example 57

of the RoomNav task. An agent is spawn randomly in a re- 58

alistic 3D house environment with a given instruction (e.g. 59

“ go to the restroom”). Then the agent has to navigate to 60

the target room by performing a sequence of actions: turn 61

left, turn right, move forward, or stop. This paper’s objec- 62

tive is not to build an agent which outperforms the state- 63

of-the-art in the RoomNav task. Instead, the primary focus 64

of our research is to explore the research question related 65

to grounded language understanding without data bias is- 66

sues seen in previous research: can intrinsic features such as 67

common sense and semantic grounded understanding of the 68

environment also help the agent navigate with high-level in- 69

structions? Our contributions to address the problem are the 70

following: (i) we proposed novel ways to incorporate com- 71

mon sense and semantic understanding within the artificial 72

agents to address a complex task in the multi-modal setting 73

inspired by humans (ii) proposed semantically-guided self- 74

supervised imitation learning (SIL) mechanism for ground- 75

ing to fine-tune the agent on unseen environments for gen- 76

eralization ability (iii) showed that common sense facilitates 77

long-term while semantic grounding facilitates local plan- 78

ning, and (iv) demonstrated that the reason common sense 79

and semantic grounded understanding help with navigation 80

is by mapping learned instruction embeddings to the scenes. 81



Figure 1: Illustration of the RoomNav task. At each timestep, the agent observes a panoramic view (left, front and right views
concatenated) with dining room on the left, living room ahead, wall on the right, and hallway being current. The agent is
spawned in a random location and is asked to navigate to the target room with a high-level instruction (”Go to the kitchen”)
using four possible actions: turn right, turn left, go forward, and stop.

Related Work82

Previous related research in embodied environments lie in83

comparing vision and language-grounded tasks, exploring84

potential underlying features of the environment, and mak-85

ing agents more robust towards unseen environments.86

Vision and Language Grounded Tasks: Embodied87

question answering (Das et al. 2017) and instruction fol-88

lowing (Anderson et al. 2017; Shridhar et al. 2020) in em-89

bodied environments have been popular to study the inter-90

action between language and visual inputs. We choose the91

RoomNav task to test the research question that whether92

equipping an agent with similar high-level inputs as humans93

(common sense and semantic understanding) can help with94

downstream navigation tasks by eliminating other factors95

such as data bias seen in instruction following tasks (Hu96

et al. 2019).97

Common Sense and Understanding: Some recent re-98

search explores semantic representation and common sense99

knowledge graph in object navigation tasks in simpler envi-100

ronment settings (Hermann et al. 2017). Mousavian et al.101

(2018) use pre-trained object detection or segmentation102

models to represent semantics to navigate to five semantic103

goals in nine homes. Yang et al. (2019) extract relation-104

ships among objects into a knowledge graph with a Graph105

Convolution (Kipf and Welling 2017) encoding as priors to106

the navigation model. Gupta et al. (2017) propose a spatial107

memory map by projecting environment information to a 2D108

matrix. Recently, Wu et al. (2019) proposed to model rela-109

tional memory among room types in navigation tasks using110

a Bayesian probabilistic relational graph. We instead adopt a111

simple backward language model to model common sense.112

In our work, we train the agent to learn semantics and com-113

mon sense together in navigation. Instead of abstracting vi-114

sual and language representations, we illustrate whether pro-115

viding these inputs can help with embodied tasks. In addi-116

tion, we leverage the learned models and further fine-tune117

the agent in novel environments. We also demonstrate the118

causality by analyzing what the agent learns.119

Robustification: Several studies have analyzed robus- 120

tification and generalization to unseen environments, us- 121

ing methods such as reinforcement learning and semi- 122

supervised learning. Manolis Savva et al. (2019) apply 123

Proximal Policy Optimization (Schulman et al. 2017) for 124

point-nav task guided by a very strong signal of the rela- 125

tive distance between the agent and the target coordinate. 126

Wang et al. (2018) fine-tune the agent on unseen environ- 127

ments using a cycle-reconstruction loss obtained by revers- 128

ing the original instruction following problem (Fried et al. 129

2018). For a similar RoomNav task, Wu et al. (2018a) use 130

Deep Deterministic Policy Gradient (Heess et al. 2015) and 131

Asynchronous Advantage Actor Critic (Mnih et al. 2016) on 132

the semantically rich House3D (Wu et al. 2018b) environ- 133

ment. These learned policies do not leverage any intrinsic 134

common sense and knowledge-grounded semantic informa- 135

tion available in the environment. We perform SIL by intro- 136

ducing auxiliary tasks related to semantic understanding to 137

make the model generalize to unseen environments better. 138

Furthermore, we analyze the common sense that the agent 139

learns from SIL and why SIL improves the performance on 140

unseen environments by evaluating the understanding of the 141

agent on the input instructions. 142

Common Sense and Semantically Grounded 143

Agent 144

We first introduce the agent architecture, and then the learn- 145

ing process. 146

Agent Architecture 147

Our architecture consists of four components: Base Navi- 148

gation, Common Sense Planning, Semantic Grounding, and 149

Semantic-Grounded Navigator. We also explain how the 150

agent functions can be fine-tuned on unseen environments 151

without annotations. Figure 2 shows the entire architecture 152

framework and Figure 6 in the Appendix depicts detailed ar- 153

chitecture with model information along with loss functions. 154



Common Sense Planning Module (CP)
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Sampled from annotations during training or 
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after agent predicts "stop"
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Scene-based Next Room Prediction (CP_Nxt)
(e.g. "go to living room next")

Second 
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during 
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SIL else first 
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First Stage: 
during 
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SIL only (with 
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ground truth 
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1.  Task Instruction (e.g. "go to the 

kitchen"): Static through the trajectory
2. Pre-trained ResNet over panoramic 

view at each step

+

Input during Second Stage: 
Semantic Representation 

Figure 2: High-level architecture of Common Sense and Semantically Grounded Navigation model. Red components corre-
spond to Base Navigation model. Purple components are introduced to incorporate common sense while pink components are
used for semantic understanding. The Semantically Grounded Navigator (SGN) is designed to perform semantic understanding
for action prediction, while common sense is fed as guidance for better planning. Dotted lines indicate input in the second pass
in the model. A detailed architecture with model information and illustration with all the loss functions can be found in Figure
6 in the Appendix.

Base Navigation We use an LSTM-based (Hochreiter and155

Schmidhuber 1997) navigation model following the work in156

Das et al. (2017) to train a navigation agent which predicts157

an action given the current state. The input to the LSTM is158

the context of the path, RoomNav instructions (e.g. “go to159

the kitchen”), a visual representation of the scene, and the160

previous action following Das et al. (2017). We choose the161

simple LSTM baseline as opposed to a state-of-the-art nav-162

igation model because the components we introduce are or-163

thogonal to the previous contributions which did not utilize164

this available information from the environment. In addition,165

using a simple model reduces the influence from interacting166

with different complex modules, and thus disentangles the167

contribution of incorporating common sense and semantic168

understanding.169

Common Sense Planning Module (CP ) We hypothesize170

that realistic house environments follow common sense such171

as structural patterns (e.g. a refrigerator is usually placed in172

the kitchen) and sequential patterns (e.g. a kitchen is usually173

near a dining room). To incorporate such common sense in-174

formation in the agent, we design two auxiliary tasks in the 175

CP module: Scene-based Next Room Prediction (CP Nxt) 176

and Room Sequence Common Sense (CP RS) using room 177

sequences observed from training environments. CP Nxt 178

module enables the agent to predict and navigate to interme- 179

diate targets to deal with the fact that the target room in the 180

instruction may be distant and thus hard to interpret. Specif- 181

ically, we train the agent to predict the next room as an in- 182

termediate goal at every time step. For instance, in Figure 183

1, the agent is in the hallway, and the CP Nxt module will 184

predict the next room to move to as “dining room”, since it 185

is the closest room on the potential path to the target location 186

(the kitchen). 187

The CP Nxt module is hinted by the current scene and 188

the target room from the instruction, but it does not take into 189

account what rooms are connected to the target room. To 190

rectify such misalignment, we design CP RS to generate 191

backward room sequences that start from the target room 192

using an LSTM model, similar to an auto-regressive lan- 193

guage model. We then obtain a contextual representation by 194

attending CP Nxt hidden state to each state representation 195



in the output of the CP RS module before predicting the196

next room accordingly.197

Semantic Grounding Module (SG) We design two sub-198

modules in SG to help the agent to understand the semantics199

of the environment: (i) Current Room Detection (SG CRD)200

for detecting the current room at each timestep to capture lo-201

cal semantics and (ii) Post Navigation Grounding (SG PN )202

for understanding and capturing the global semantics along203

the trajectory. We cast SG CRD as a multi-label classifica-204

tion problem to detect the room type on top of the hidden205

states from the base navigation LSTM. In comparison, we206

cast the SG PN as a binary classification problem to pre-207

dict if there is a certain room type on the trajectory using the208

last hidden state with a sampled question (e.g. “did you see209

a bathroom on the way”) from the environment annotations.210

Semantic-grounded Navigator (SGN ) SGN incorpo-211

rates CP and SG into the Base Navigation model. Our212

SGN first adopts the LSTM baseline model and generates213

a state at every step that is used in multiple tasks: (i) ac-214

tion prediction to perform one of the four possible actions215

at each step: go forward (0.25m), turn left (10 degrees), turn216

right (10 degrees), and stop; (ii) semantic grounding via cur-217

rent room detection (SG CRD); and (iii) semantic grounding218

via post-navigation grounding (SG PN). The SGN takes the219

RoomNav instruction (which is fixed throughout the task)220

and the visual representation (which changes at each step)221

as input. In specific, SGN predicts the current room for222

SG CRD using a linear layer on top of each SGN hidden223

state and predicts post-navigation answer on the last SGN224

hidden state. For action prediction at each timestep, the SGN225

hidden state attends to each hidden state of the generic room226

sequence in CP RS to obtain a contextual representation.227

The attention-based representation is then concatenated with228

the original SGN hidden state to predict the next action.229

Please refer to Figure 6 in the Appendix for more details.230

Two-stage SGN for Self-supervised Learning with Room231

Extraction (RE) Module In an unseen environment, we232

aim to build an agent which can update its action predic-233

tion by aligning what it has learned already to the unique234

patterns and semantics observed in the new setting. Humans235

are capable of doing this because they have semantic under-236

standing: humans fine-tune their action prediction in an un-237

seen environment according to newer semantic observations.238

Since there is no semantic annotation for unseen environ-239

ments, we need to simulate the annotations as ground-truth240

to fine-tune the SGN module in a self-supervised setting. To241

get extra pseudo labels, we introduce the Room Extraction242

Module (RE).243

The RE module detects the current room and the rooms244

on the left, right, and front given the panoramic represen-245

tation, which facilitates the agent to understand semantics246

from different angles. We implement the RE module with247

a multi-layer perceptron (MLP) on the image representa-248

tion and add different heads for different room extraction.249

Note that the major difference between RE and SG CRD250

is the input to the modules: RE takes image features in-251

dependently from the agent while SG CRD takes hidden252

states from SGN as input for room detection. Specifically, 253

RE is a separate model to extract semantics, agnostic to 254

instructions and trajectories. In comparison, SG CRD en- 255

codes the instruction and the trajectory history. More impor- 256

tantly, SG CRD shares parameters with SGN which pre- 257

dicts actions. Therefore, we take RE predictions as pseudo 258

ground-truth and fine-tune SG CRD on top of SGN so that 259

we can achieve the goal of fine-tuning action prediction. 260

Because we need independent features to predict the same 261

objective from RE and SG CRD, we design a two-stage 262

training process over the SGN at each time step to per- 263

form grounding along with navigation. In the first stage, the 264

Current Room Detection task (SG CRD) on top of SGN 265

is performed without information flowing from RE repre- 266

sentations by masking. The reason for masking RE repre- 267

sentation is that RE hidden states are optimized for room 268

extractions in different angles with its training objective, 269

which already contains room detection features. Without 270

RE hidden state, SGN is encouraged to capture seman- 271

tics for SGN CRD to detect room information indepen- 272

dently using raw scene information and previous SGN hid- 273

den states. On the other hand, if RE outputs are considered 274

as features, SG CRD may simply copy the representations 275

without utilizing the learned semantics. Similarly, Post Nav- 276

igation Grounding task (SG PN ) on top of SGN is per- 277

formed only at the last state when ”stop” action is received 278

in the first stage. In the second stage, we feed output repre- 279

sentations from CP and RE modules (depicted via dotted 280

lines in Figure 2) into SGN to perform action prediction. 281

The reason to incorporateRE representation, which extracts 282

features directly from image input, is that abstracted seman- 283

tics are shown to help with navigation as seen in previous re- 284

search (Mousavian et al. 2018; Hudson and Manning 2019). 285

With the two-stage training objectives, we can perform 286

self-supervised learning (SIL) on unseen environments to 287

update the agent for better semantic understanding. In spe- 288

cific, we take the prediction from RE as ground truth labels 289

and fine-tune the SG CRD and SG PN heads together 290

with the SGN for action prediction. The agent explores the 291

environment according to the trained SGN for a pre-defined 292

t steps to get familiarized with the new environment, cal- 293

culates losses between the two room detection models, and 294

finally updates the parameters for the LSTM in SGN . The 295

agent then navigates towards the target room from the start- 296

ing location using the fine-tuned parameters. 297

Learning Procedure 298

We train the agent in two ways: (i) imitation learning (IL) 299

with shortest path trajectories available during training, and 300

(ii) self-supervised imitation learning (SIL) on unseen en- 301

vironments, inspired by the work from (Wang et al. 2018). 302

During IL, apart from the main action prediction task, 303

we perform five auxiliary tasks: 1. next room detection 304

(CP Nxt) 2. target to source room sequence prediction 305

(CP RS) 3. current and surrounding rooms extraction (RE) 306

4. post navigation response generation (SG PN ) and 5. cur- 307

rent room predictions on top of SGN for the first stage 308

(SG CRD). In total, we have six losses during imitation 309

learning including action prediction. The overall loss func- 310



Module
succ.
rate

easy
succ.
rate

med.
succ.
rate

hard
succ.
rate

Baseline 0.25 0.41 0.24 0.17
+ Common Sense (CS) 0.30 0.44 0.29 0.25

+ Semantic Grounding (SG) 0.28 0.53 0.24 0.19
+ SG + SIL 0.36 0.56 0.40 0.21

+ CP + SG + SIL 0.39 0.56 0.40 0.28

Table 1: Results on Imitation Learning (IL) and Self-supervised IL (SIL) for easy, medium, and hard trajectories on unseen
test environments. For Common Sense Planning (CP ), CP Nxt represents next room prediction while CP RS utilizes room
sequence. For Semantic Ground (SG), room extraction (RE) identifies current and nearby rooms on input images, while
SG CRD and SG PN performs current room detection at each timestep for local semantics and post navigation for global
semantics, respectively, on hidden states.

tion is:311

LIL = λ a ∗ L action+ λCP Nxt ∗ LCP Nxt

+ λCP RS ∗ LCP RS + λRE ∗ LRE + λSG PN

∗ LSG PN + λSGN CRD ∗ LSGN CRD

(1)

where the loss for each task is the cross-entropy loss be-312

tween the prediction and the annotations in the environment313

on either the last state (for SG PN only) or for each state314

in the SGN (for other modules).315

For SIL on unseen environments, we obtain losses from316

SG CRD usingRE predictions as target labels at each time317

step and from SG PN at the end of the exploration. The318

loss function is represented as:319

(2)LSIL = λSG CRD ∗ L
′

SG CRD +

λSG PN ∗ L
′

SG PN

where L
′

SG CRD and L
′

SG PN indicates the loss using sim-320

ulated labels on unseen environments, in comparison with321

LSG CRD andLSG PN using true ground-truth labels on an-322

notated training environments.323

Experiments324

Data and Environment: We use Habitat Simulator and cor-325

responding APIs (Manolis Savva et al. 2019) to render the326

MatterPort3D environment for all our tasks. One of the key327

tasks in MatterPort3D dataset is point navigation, wherein328

an agent needs to navigate from a source coordinate to a tar-329

get coordinate. We adapt this task to form a RoomNav task330

by replacing the target coordinates with the corresponding331

27 room types annotated in the dataset (excluding “other332

room”). We remove those trajectories where the target and333

the source rooms are the same and the ones where the target334

is at the border of several rooms. There are in total 53 houses335

and 5020 trajectories in training, 11 houses and 168 trajec-336

tories for validation , and 15 houses and 324 trajectories for337

testing. To measure the complexity of each trajectory, we use338

the same measure as the point navigation task, which is the339

ratio of geodisic distance to that of the euclidean distance,340

where higher ratio indicates harder tasks. The average num-341

ber of rooms between the source and target is 2.41, 3.01, and342

4.06, in easy, medium, and hard trajectories in the training 343

data respectively. 344

Model Input: The SGN has two types of input: (i) Envi- 345

ronment input including task specific instruction (e.g. “go 346

to the kitchen”) and RGB values of visual observations in 347

each state, and (ii) semantic information such as room an- 348

notations for training RE and sampled questions for PN . 349

Semantic information is used in semantic predictions and 350

question generation during training only, because such in- 351

formation is not available on unseen environments. Follow- 352

ing previous embodied navigation work (Fried et al. 2018; 353

Wang et al. 2018), we extract panoramic image features us- 354

ing a fixed pretrained ResNet-152 (He et al. 2015). Specif- 355

ically, we turn the agent 90 degrees to the left and right to 356

obtain a 270-degree view at each timestep. We extract and 357

concatenate features in the left, front, and right images and 358

then pass through a single feed forward layer to obtain the 359

environment visual representation. In order to evaluate the 360

information gained from semantic understanding instead of 361

memorizing segments or detecting obstructions, we only use 362

RGB features in our model instead of features from other 363

sensors, such as semantic masking features (Wu et al. 2018a) 364

or depth features. 365

Hyperparameter tuning: We use the validation set to tune 366

the hyperparameters including the weights in each of the 367

tasks in equation 1. In specific, we set the weight of action 368

prediction loss to 1 and do grid search for other weights. 369

Evaluation Metrics: We use three evaluation metrics: suc- 370

cess rate, success per length (SPL) following Wang et al. 371

(2018), and non-stop SPL. Success rate is defined as the 372

percentage of trajectories where the agent enters the target 373

room. Success per length (SPL) is defined as the success rate 374

normalized by the shortest path. In particular, SPL considers 375

a game successful only if the agent predicts the “stop” ac- 376

tion inside the target room, which is infrequently seen (about 377

once every 71 steps) compared to other actions during train- 378

ing. We use non-stop SPL to relax this constraint to count 379

the percentage of trajectories in which agent enters the tar- 380

get room during the trajectory. We note that non-stop SPL 381

is a relatively weak metric, but we include this less sensi- 382

tive metric against the “stop” action to indicate how well 383

the agent can navigate to the target room. In other words, 384

non-stop SPL can indicate the agent’s performance on path 385



planning. We also report average steps, which directly de-386

termines SPL, to indicate the number of steps the agent ex-387

plores before predicting “stop” (with the maximum number388

of steps set to 200, and the average number of steps in the389

annotated trajectories for training is 82).390

Results391

We first analyze results for imitation learning and self-392

supervised imitation learning. Then we interpret why the393

agent benefits from the proposed model by interpreting the394

learned embedding alignments.395

Imitation learning396

We observe in Table 1 that common sense planning and se-397

mantic understanding help in the imitation learning setting398

across the board when compared to the LSTM baseline399

model that does not incorporate these modules. Note that400

common sense and semantic information is not fed as fea-401

tures to the agent, rather is learnt via auxiliary tasks.402

Common Sense Planning: We incorporate common403

sense via two sub-tasks: (i) next room guidance (CP Nxt)404

and (ii) generic room sequence from target to source room405

(CP RS) as described in section . Results show that CP mod-406

ules improve navigation performances in medium and harder407

trajectories more than the easy trajectories and hence in-408

dicates that they help with long-term planning. Next room409

prediction alone leads to significant improvement in SPL410

(80% improvement over the baseline) and the second best411

success rate in hard tasks (40% improvement over baseline).412

When we combine with room sequence module, the agent’s413

performance improves in both easy and medium trajecto-414

ries, but not in hard trajectories. This suggests that room se-415

quence module learns generic patterns, but for hard trajecto-416

ries where geodesic distance is significantly higher than the417

euclidean distance, CP RS does not help much probably418

due to incorrect long sequence predictions.419

Semantic Understanding is incorporated via three dif-420

ferent tasks: (i) a separate room identification model which421

predicts nearby rooms (RE) given current views using the422

shared ResNet input. (ii) current room prediction given423

the SGN hidden state (SGN CRD) (iii) post-navigation424

grounding with sampled question (SGN PN ). Results sug-425

gest that incorporating semantic understanding generally426

improves short-term planning compared to an agent with-427

out semantic understanding (baseline). It is observed that the428

agent fed with RE and SG CRD tends to achieve higher429

SPL scores because it usually stops early with less aver-430

age number of steps to complete the task. At the same time,431

the early stopping can also explain the low performances on432

medium and hard trajectories. SG PN does not follow a sim-433

ilar pattern because grounding in this case is performed at434

the terminal state, hence it does not impact turn-level action435

prediction directly, leading to longer trajectories. Moreover,436

SG PN does better on medium and hard trajectories be-437

cause it lets the navigator (SGN) focus more on intermediate438

action predictions while ensuring semantic understanding at439

the terminal state.440

Combing the two room detection objectives together 441

(RE+SG CRD), we get the second best SPL score (0.141, 442

110% better than the baseline) but improvements are mostly 443

on easy trajectories. This indicates that the agent might tend 444

to focus more on the auxiliary task than on the original ac- 445

tion prediction task. However, adding SG PN to step level 446

RE and SG CRD modules to facilitate semantic under- 447

standing from a global perspective leads to significant in- 448

crease in performance for medium and hard trajectories, 449

while maintaining high SPL scores. 450

Discussion: Note that the average number of steps is 451

higher than that in the annotated trajectory (82). From our 452

qualitative analysis by evaluating the generated videos along 453

the testing trajectories, the main reason for higher average 454

steps is that the agent can get stuck in front of an object such 455

as a table (by predicting turning and going forward consis- 456

tently). This indicates that the agent does not achieve the 457

goal by chance roaming around the environment. In addi- 458

tion, different performances in different metrics such as suc- 459

cess rate in multiple difficulty levels suggest that our pro- 460

posed modules are complementary to each other since they 461

are helping navigation in different perspectives. 462

Self-supervised Imitation Learning 463

To perform SIL, we either use current room prediction 464

(SG CRD) or post navigation grounding (SG PN) or both 465

as the auxiliary task to fine-tune the Semantically Grounded 466

Navigator (SGN) to get a loss function against the simulated 467

target label using RE. While performing SIL, we found 468

that by letting the agent explore unseen environments for 20 469

steps (t = 20) before actually executing the instruction and 470

navigating to the target significantly improves the perfor- 471

mance (7% with RE + SG CRD, 22% with RE + SG PN and 472

RE + SG CRD + SG PN). Similar to the pattern observed 473

without SIL, using local semantic grounding (SG CRD) 474

performs better on easier trajectories while using global se- 475

mantic grounding by post-navigation questions (SG PN ) 476

achieves better performance on harder trajectories. Finally, 477

when we combine all the proposedCP and SGmodules and 478

perform SIL, we get the best performance overall with 56% 479

improvement over non-stop SPL and 64% improvement over 480

SPL, with maximum improvements on medium and hard 481

trajectories. Note that the low absolute scores on SPL and 482

non-stop SPL indicates that room navigation with low-level 483

instructions on unseen environment for generalization is a 484

hard task. We also observe that when we further fine-tune the 485

agent in the SIL setting with more steps (with t = 40, 60), 486

the performance degrades drastically as the model tends to 487

overfit to noises of the approximate pseudo labels obtained 488

from the RE model. 489

Cross-modal Embeddings 490

To identify why CP and semantic understanding helps in the 491

navigation task, we analyzed the cross-modal embeddings 492

learnt during training to show how the agent interpret lan- 493

guage instructions. Traditional embeddings such as GloVe 494

(Pennington, Socher, and Manning 2014), are functions of 495

words or semantic entities appearing in similar contexts and 496



Figure 3: Top view of a house layout
with dark areas as obstacles

Figure 4: Embeddings of RE + SG CRD
model trained on all the training environ-
ments mapped to 2D space with PCA

Figure 5: Embeddings of RE + SG CRD
model after SIL fine-tuning on the envi-
ronment in Figure 3 mapped to 2D space.

may not capture the visual and structural properties of en-497

tities in realistic 3D worlds. Therefore, we first randomly498

initialize the cross-modal embeddings and then train them499

with the proposed modules across multiple trajectories in500

different environments. We qualitatively analyze these em-501

beddings to explore if they reflect any structural or visual502

characteristics of the environment. Figure 3 represents the503

top-view of an environment and Figure 4 visualizes the em-504

beddings trained using the RE + SG CRD model by dimen-505

sion reduction using PCA (while other models illustate sim-506

ilar patterns). The figure shows that the learned embeddings507

capture the average structural pattern of rooms across all the508

environments. We further fine-tune the agent and the em-509

beddings on the example environment shown in Figure 3510

using self-supervised imitation learning and visualize it in511

Figure 5. We observe that the fine-tuned embeddings tend to512

mimic the structural and positional patterns of the exact en-513

vironment. This indicates that the proposed models help the514

agent to understand the instructions better by aligning the515

instruction encoding with the actual scene information. We516

conjecture that such alignment, which is learned from the517

proposed common sense and semantic grounding modules,518

explains what the model actually learns. The close map-519

ping between the fine-tuned word embeddings of the room520

types and the structure of the environment draws connec-521

tions to the SLAM (Durrant-Whyte and Bailey 2006) algo-522

rithm, which is one of the most popular mapping algorithms523

for navigation. However, we can leverage what the agent has524

already learned as a prior instead of exhaustively exploring525

each room for SLAM. This alignment also draws connec-526

tion to recent research on vision-and-language pre-training527

such as VisualBERT (Li et al. 2019) which is optimized to528

align text and image regions with self-attention. We leave529

the detailed comparison to future work.530

Conclusion 531

Humans navigate to rooms on unseen environments lever- 532

aging common sense of room layout and semantic under- 533

standing of the environment. We propose to simulate human 534

navigation by incorporating these features ignored in previ- 535

ous research. The goal of this paper is not to build a state- 536

of-the-art navigation system, but using the navigation envi- 537

ronment to explore if common sense and semantic ground- 538

ing is useful in visual navigation. We introduced methods to 539

incorporate these features and showed that common sense 540

and semantic grounding help in long-term and short-term 541

planning respectively for effective navigation. We also found 542

out that the agent fine-tuned using self-supervised imitation 543

learning generalizes better to unseen environments. Further- 544

more, we analyzed the reason for such improvement by in- 545

specting cross-modal embeddings obtained during training, 546

which captures structural and positional patterns of the envi- 547

ronment. This suggests that the agent learns a semantic map 548

of the environment in the process of the navigation. 549
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Appendix674



Figure 6: Detailed architecture for Common Sense and Semantically Grounded Navigation model. Black components corre-
spond to the baseline navigator model. Purple components are introduced to incorporate common sense while pink components
are for Semantic Understanding. Semantically Grounded Navigator (SGN) is designed to perform semantic understanding for
action prediction, while common sense is fed as guidance for better planning. There are six losses, four of them are locked
during inference, except LSG CRD and LSG PN are unlocked for self-supervision.
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